Poster-2-17

Highly anisotropic in-plane ferroelectricity in CaTiO₃ thin films

Lukas Korosec,¹ Marios Hadjimichael,^{1,2} Louis Bastogne,³ Evgenios Stylianidis,⁴ Clémentine Thibault,¹ Dan Porter,⁵ Gareth Nisbet,⁵ Philippe Ghosez,³ and Jean-Marc Triscone¹

¹ Department of Quantum Matter Physics, University of Geneva
² Department of Physics, University of Warwick
³ Theoretical Materials Physics, Q-MAT, Université de Liège
⁴ Department of Physics and Astronomy, University College London
⁵ Diamond Light Source, Harwell Science and Innovation Campus

While CaTiO₃ is non-polar in its bulk form, ferroelectricity has been demonstrated in epitaxial thin films [1,2,3]. We have discovered two unusual, highly anisotropic in-plane ferroelectric states in CaTiO₃ films caused by the interaction between polarization, oxygen octahedral rotations, and epitaxial strain. Films deposited on (110)-oriented NdGaO₃ substrates show uniaxial in-plane ferroelectricity with a regular dielectric response in the orthogonal in-plane direction. In films on (001)-oriented NdGaO₃, the polarization lies near the *a* axis in the ground state — however, electric fields along the *b* axis cause a discontinuous rotation of the polarization, resulting in antiferroelectric-like double-hysteresis loops.

[1] Biegalski et al., Appl. Phys. Lett. 106, 162904 (2015).

- [2] Haislmaier et al., Adv. Funct. Mater. 26, 7271 (2016).
- [3] Kim et al., Nat Commun 11, 4944 (2020).