Poster-2-12

Structural studies on new, layered K-Cu-Te oxides

Felix Eder,¹ Matthias Weil,² Ronald Miletich,³ and Harishchandra Singh⁴

¹ University of Geneva, Department of Quantum Matter Physics, Laboratory for Quantum Material Discovery ² Technical University of Vienna, Institute for Chemical Technologies and Analytics, Division of Structural Chemistry

³ University of Vienna, Department of Mineralogy and Crystallography

⁴ University of Oulo, Faculty of Science, Nano and Molecular Systems Research Unit

The family of layered alkali (*A*) transition metal (*M*) oxidotellurates(VI) with a composition of $A_2M_2TeO_6$ can exhibit promising electrochemical properties (*e.g.* $Li_2Ni_2TeO_6$ [1]) as well as frustrated 2D antiferromagnetism (*e.g.* $Na_2Co_2TeO_6$ [2] and $Na_2Ni_2TeO_6$ [3]) due to the honeycomb sublattice of the transition metal atoms.

The new phase $K_2Cu_2TeO_6$ was synthesized using the hydroflux method [4]. Its crystal structure consists of $[CuTe_2O_6]$ layers separated by K⁺ cations. The honeycomb sublattice of the Cu atoms is distorted due to the pronounced Jahn–Teller effect of Cu(II).

The structural evolution of $K_2Cu_2TeO_6$ at increased temperatures and pressures was investigated by high-temperature synchrotron powder diffraction and high-pressure Raman spectroscopy. During the latter, hints of a second-order phase transition at pressures of 5–7 GPa were observed.

 $K_2Cu_2TeO_6$ is prone to incorporate water molecules besides the K⁺ cations between the layers; this process can be tracked by the shifting of reflections to smaller angles in X-ray powder diffraction measurements. Furthermore, there exist two stoichiometric hydrates (mono-, and tetrahydrate) of $K_2Cu_2TeO_6$, which can be obtained under hydroflux conditions as well.

[1] Grundish, N. S. et al. (2019). Chem. Mater. 31(22), 9379-9388.

[2] Bera, A. K. et al. (2017). Phys. Rev. B 95, 094424.

[3] Kurbakov, A. I. et al (2020). J. Alloys Compd. 820, 153354.

[4] Bugaris, D. E. et al. (2013). Inorg. Chem. 52(7), 3836-3844.