Poster-2-21

Bismuth-Rich Intermetallic Rods with Strong Spin-Orbit Coupling

Maria Herz,^{1,2,3} Kati Finzel,^{2,4} Walter Schnelle,⁴ and Michael Ruck^{2,3,4}

¹ Department of Quantum Matter Physics, Université de Genève
² Faculty of Chemistry and Food Chemistry, Technische Universität Dresden
³ Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden
⁴ Max Planck Institute for Chemical Physics of Solids, Dresden

During the search for novel topologically non-trivial materials, materials containing heavy elements, with large spin-orbit coupling were investigated. A particular focus lay on materials containing the heaviest non-radioactive element bismuth, as its large spin-orbit coupling has proven highly advantageous in finding compounds that exhibit the desired properties. In the course of these investigations, the novel bismuth-rich mixed halide $Bi_{21}Rh_4Cl_6I_7$ was found.^[1] The black needle-shaped crystals of this material showcase an orthorhombic structure that consists of infinite intermetallic rods ${}^1_{\infty}$ [Bi₉Rh₂]³⁺ and discrete anionic groups [Bi^{II}₂Cl₅I₂]³ and [Bi^{III}Cl₄I₂]³. The rods consist of Rh-centered [RhBi₈] polyhedra that alternately share triangular and rectangular faces. Using traditional electron counting rules, the intermetallic rod can be interpreted as a covalent polymer with Rh₂ dumbbells bonded to molecular Bi₂ and Bi₅ units, while a quantum-chemical bonding analysis shows that the bonds involving Rh atoms are largely diffuse, while two-center bonds dominate in the bismuth units. Resistivity measurements indicate two temperature regimes, of which one showcases a temperature-independent resistance and this, along with the strong spin-orbit coupling inherent to this bismuth-rich compound, makes it a candidate for a topological insulator.

[1] M. A. Herz, K. Finzel, W. Schnelle, M. Ruck, Z. Anorg. Allg. Chem. 2023, e202300124.